
Public-key cryptography in the
pre- and post-quantum world

Gabriel Chênevert

October 18, 2018

Catholic University of Lille

Symmetric cryptography

• encryption and decryption (knowing the key) should be fast

• decryption without the proper key should be LONG

Symmetric cryptography

• encryption and decryption (knowing the key) should be fast

• decryption without the proper key should be LONG

Symmetric cryptography

• encryption and decryption (knowing the key) should be fast

• decryption without the proper key should be LONG

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Symmetric cryptography
Advanced Encryption Standard

• A federal standard since 2001

• Proposed as Rijndael by a team from KU Leuven

• Based on permutations and bit operations

• Accounts for the vast majority of all encryption in use today

• Uses 128, 192 or 256−bit secret keys

• The best attack is essentially brute force : try to decrypt with
all (2128, 2192, 2256) possible keys

• Key distribution might be a problem...

Asymmetric encryption

• ke public, kd private : public-key encryption

• ke private, ke public : digital signature

Asymmetric encryption

• ke public, kd private : public-key encryption

• ke private, ke public : digital signature

Asymmetric encryption

• ke public, kd private : public-key encryption

• ke private, ke public : digital signature

Asymmetric cryptography
A solution to the key distribution problem

• Alice comes up with the secret key k

• encrypts it with Bob’s public key and sends it to him

• Bob can then recover k using his private decryption key

• and they may now use AES for the rest of their discussion.

There are even (widely used schemes) in which Alice and Bob both
come up with part of the key (Diffie-Hellman).

They could also digitally sign their exchanges to avoid
man-in-the-middle attacks.

Asymmetric cryptography
A solution to the key distribution problem

• Alice comes up with the secret key k

• encrypts it with Bob’s public key and sends it to him

• Bob can then recover k using his private decryption key

• and they may now use AES for the rest of their discussion.

There are even (widely used schemes) in which Alice and Bob both
come up with part of the key (Diffie-Hellman).

They could also digitally sign their exchanges to avoid
man-in-the-middle attacks.

Asymmetric cryptography
A solution to the key distribution problem

• Alice comes up with the secret key k

• encrypts it with Bob’s public key and sends it to him

• Bob can then recover k using his private decryption key

• and they may now use AES for the rest of their discussion.

There are even (widely used schemes) in which Alice and Bob both
come up with part of the key (Diffie-Hellman).

They could also digitally sign their exchanges to avoid
man-in-the-middle attacks.

Asymmetric cryptography
A solution to the key distribution problem

• Alice comes up with the secret key k

• encrypts it with Bob’s public key and sends it to him

• Bob can then recover k using his private decryption key

• and they may now use AES for the rest of their discussion.

There are even (widely used schemes) in which Alice and Bob both
come up with part of the key (Diffie-Hellman).

They could also digitally sign their exchanges to avoid
man-in-the-middle attacks.

Asymmetric cryptography
A solution to the key distribution problem

• Alice comes up with the secret key k

• encrypts it with Bob’s public key and sends it to him

• Bob can then recover k using his private decryption key

• and they may now use AES for the rest of their discussion.

There are even (widely used schemes) in which Alice and Bob both
come up with part of the key (Diffie-Hellman).

They could also digitally sign their exchanges to avoid
man-in-the-middle attacks.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′, then a + b ≡

n
a′ + b′ and a · b ≡

n
a′ · b′.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′, then a + b ≡

n
a′ + b′ and a · b ≡

n
a′ · b′.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′, then a + b ≡

n
a′ + b′ and a · b ≡

n
a′ · b′.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′,

then a + b ≡
n
a′ + b′ and a · b ≡

n
a′ · b′.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′, then a + b ≡

n
a′ + b′

and a · b ≡
n
a′ · b′.

Modular arithmetic

Almost all algorithms in use today are based on modular arithmetic.

Definition
If a, b and n are integers, a ≡

n
b means that n | (b − a).

In others words : a ≡
n
b when there exists some integer k for which

a = b + kn.

Lemma
If a ≡

n
a′ and b ≡

n
b′, then a + b ≡

n
a′ + b′ and a · b ≡

n
a′ · b′.

Modular arithmetic
Example : clock arithmetic

Instead of going to the colloquium, I start watching the full Star
Wars saga (official episodes only) ; what time will it be when I’m
done ?

4 + 8 · 2 = 4 + 16 ≡
12

4 + 4 = 8

With a 24-hour clock :

16 + 8 · 2 = 16 + 16 = 32 ≡
24

8

Modular arithmetic
Example : clock arithmetic

Instead of going to the colloquium, I start watching the full Star
Wars saga (official episodes only) ; what time will it be when I’m
done ?

4 + 8 · 2 = 4 + 16 ≡
12

4 + 4 = 8

With a 24-hour clock :

16 + 8 · 2 = 16 + 16 = 32 ≡
24

8

Modular arithmetic
Example : clock arithmetic

Instead of going to the colloquium, I start watching the full Star
Wars saga (official episodes only) ; what time will it be when I’m
done ?

4 + 8 · 2 = 4 + 16 ≡
12

4 + 4 = 8

With a 24-hour clock :

16 + 8 · 2 = 16 + 16 = 32 ≡
24

8

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176,

b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139,

b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386,

b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221,

b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151,

b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

The operation of taking modular powers can be computed
efficiently by repeated squarings.

Example : to compute y ≡
541

17640.

Use the fact that 40 = 32 + 8 and compute by successive
squarings :

b = 176, b2 ≡
541

139, b4 ≡
541

386, b8 ≡
541

221, b16 ≡
541

151, b32 ≡
541

79

and then

b40 ≡
541

b32 · b8 ≡ 79 · 221 ≡ 147.

Modular arithmetic
Taking powers

Much quicker than first computing

b40 = 66146476117266938411

57619437514125541994

77293169155435203018

62889699022438451615

53331941376

then taking the remainder modulo 541 !

Number of steps needed is proportional to log2 of the exponent.

Modular arithmetic
Taking powers

Much quicker than first computing

b40 = 66146476117266938411

57619437514125541994

77293169155435203018

62889699022438451615

53331941376

then taking the remainder modulo 541 !

Number of steps needed is proportional to log2 of the exponent.

Rivest-Shamir-Adleman (1977)

Given a (large) integer n :E (e,m) ≡
n
me

D(d , c) ≡
n
cd

For this to work : we ask that n is square-free and that

de ≡
φ(n)

1

where φ(n) is the number of integers between 1 and n that are
coprime with n (Euler’s φ function).

If n = p1 · · · p`, then φ(n) = (p1 − 1) · · · (p` − 1).

Rivest-Shamir-Adleman (1977)

Given a (large) integer n :E (e,m) ≡
n
me

D(d , c) ≡
n
cd

For this to work : we ask that n is square-free and that

de ≡
φ(n)

1

where φ(n) is the number of integers between 1 and n that are
coprime with n (Euler’s φ function).

If n = p1 · · · p`, then φ(n) = (p1 − 1) · · · (p` − 1).

Rivest-Shamir-Adleman (1977)

Given a (large) integer n :E (e,m) ≡
n
me

D(d , c) ≡
n
cd

For this to work : we ask that n is square-free and that

de ≡
φ(n)

1

where φ(n) is the number of integers between 1 and n that are
coprime with n (Euler’s φ function).

If n = p1 · · · p`, then φ(n) = (p1 − 1) · · · (p` − 1).

RSA
A working example

Take
n = 367048600400841308411377,

m = 101010101010101010101010,

e = 3,

d = 244699066933086330699307.

Then Alice computes

c ≡
n
me ≡

n
280172275449464761297727

and Bob is able to decrypt this to

cd ≡
n

101010101010101010101010.

RSA
A working example

Take
n = 367048600400841308411377,

m = 101010101010101010101010,

e = 3,

d = 244699066933086330699307.

Then Alice computes

c ≡
n
me ≡

n
280172275449464761297727

and Bob is able to decrypt this to

cd ≡
n

101010101010101010101010.

RSA
A working example

Take
n = 367048600400841308411377,

m = 101010101010101010101010,

e = 3,

d = 244699066933086330699307.

Then Alice computes

c ≡
n
me ≡

n
280172275449464761297727

and Bob is able to decrypt this to

cd ≡
n

101010101010101010101010.

RSA
Security

Knowing e (or d), it is easy to recover the other key in log(n)
steps by using Euclid’s algorithm backwards :

de + kφ(n) = 1.

Thus we better make the computation of φ(n) knowing n as long
as possible.

Best currently known algorithm : first factor n as

n = p1 · · · p`

then (trivially) compute

φ(n) = (p1 − 1) · · · (p` − 1).

RSA
Security

Knowing e (or d), it is easy to recover the other key in log(n)
steps by using Euclid’s algorithm backwards :

de + kφ(n) = 1.

Thus we better make the computation of φ(n) knowing n as long
as possible.

Best currently known algorithm : first factor n as

n = p1 · · · p`

then (trivially) compute

φ(n) = (p1 − 1) · · · (p` − 1).

RSA
Security

Knowing e (or d), it is easy to recover the other key in log(n)
steps by using Euclid’s algorithm backwards :

de + kφ(n) = 1.

Thus we better make the computation of φ(n) knowing n as long
as possible.

Best currently known algorithm : first factor n as

n = p1 · · · p`

then (trivially) compute

φ(n) = (p1 − 1) · · · (p` − 1).

RSA
Factoring n

Assume n = p1 · · · p` with p1 < . . . < p`.

Naive factorisation algorithm : try dividing n by all successive
integers until p1 is found (then repeat with n

p1
).

Worst case : have all prime factors as large as possible, pi ≈
√̀
n.

Might as well take ` = 2 ! Then n = pq with p, q prime and

φ(n) = (p − 1)(q − 1).

RSA
Factoring n

Assume n = p1 · · · p` with p1 < . . . < p`.

Naive factorisation algorithm : try dividing n by all successive
integers until p1 is found (then repeat with n

p1
).

Worst case : have all prime factors as large as possible, pi ≈
√̀
n.

Might as well take ` = 2 ! Then n = pq with p, q prime and

φ(n) = (p − 1)(q − 1).

RSA
Factoring n

Assume n = p1 · · · p` with p1 < . . . < p`.

Naive factorisation algorithm : try dividing n by all successive
integers until p1 is found (then repeat with n

p1
).

Worst case : have all prime factors as large as possible, pi ≈
√̀
n.

Might as well take ` = 2 ! Then n = pq with p, q prime and

φ(n) = (p − 1)(q − 1).

RSA
Factoring n

Assume n = p1 · · · p` with p1 < . . . < p`.

Naive factorisation algorithm : try dividing n by all successive
integers until p1 is found (then repeat with n

p1
).

Worst case : have all prime factors as large as possible, pi ≈
√̀
n.

Might as well take ` = 2 ! Then n = pq with p, q prime and

φ(n) = (p − 1)(q − 1).

RSA
L-notation

For c ∈ R and α ∈ [0, 1],

Lα(n) := exp
(
c (log n)α (log log n)1−α

)
.

• L0(n) = (log n)c

• L1(n) = nc

• in general Lα(n) is somewhere between these two.

RSA
L-notation

For c ∈ R and α ∈ [0, 1],

Lα(n) := exp
(
c (log n)α (log log n)1−α

)
.

• L0(n) = (log n)c

• L1(n) = nc

• in general Lα(n) is somewhere between these two.

RSA
L-notation

For c ∈ R and α ∈ [0, 1],

Lα(n) := exp
(
c (log n)α (log log n)1−α

)
.

• L0(n) = (log n)c

• L1(n) = nc

• in general Lα(n) is somewhere between these two.

RSA
L-notation

For c ∈ R and α ∈ [0, 1],

Lα(n) := exp
(
c (log n)α (log log n)1−α

)
.

• L0(n) = (log n)c

• L1(n) = nc

• in general Lα(n) is somewhere between these two.

RSA
Factoring n

• Trial division (1202) : L1 with c = 1
2

• Quadratic sieve (1981) : L 1
2

avec d = 1

• General number field sieve (1993) : L 1
3

avec d ≈ 1,923.

RSA
Factoring n

• Trial division (1202) : L1 with c = 1
2

• Quadratic sieve (1981) : L 1
2

avec d = 1

• General number field sieve (1993) : L 1
3

avec d ≈ 1,923.

RSA
Factoring n

• Trial division (1202) : L1 with c = 1
2

• Quadratic sieve (1981) : L 1
2

avec d = 1

• General number field sieve (1993) : L 1
3

avec d ≈ 1,923.

RSA
Equivalent symmetric ciphers

Discrete logarithms

Another way to use modular exponentiation : x ≡
n
g y

Discrete logarithm problem : find y = � logg (x) �

Same algorithmic complexity than factoring (DSA, Diffie-Hellman)

But :
√
n in more general groups

=⇒ methods based on elliptic curves (ECDSA, ECDH)

Discrete logarithms

Another way to use modular exponentiation : x ≡
n
g y

Discrete logarithm problem : find y = � logg (x) �

Same algorithmic complexity than factoring (DSA, Diffie-Hellman)

But :
√
n in more general groups

=⇒ methods based on elliptic curves (ECDSA, ECDH)

Discrete logarithms

Another way to use modular exponentiation : x ≡
n
g y

Discrete logarithm problem : find y = � logg (x) �

Same algorithmic complexity than factoring (DSA, Diffie-Hellman)

But :
√
n in more general groups

=⇒ methods based on elliptic curves (ECDSA, ECDH)

Discrete logarithms

Another way to use modular exponentiation : x ≡
n
g y

Discrete logarithm problem : find y = � logg (x) �

Same algorithmic complexity than factoring (DSA, Diffie-Hellman)

But :
√
n in more general groups

=⇒ methods based on elliptic curves (ECDSA, ECDH)

Quantum computers
State of the art

Simulated annealing IBM : 50 qubits Google : 70 qubits

Quantum computers
Grover’s algorithm

Quantum computers
Grover’s algorithm

Quantum computers
Grover’s algorithm

Given an arbitrary function f : A→ B with |A| = n and b ∈ f (A),
looking for a preimage a ∈ A such that f (a) = b classically takes n
evaluations.

A quantum computer could (probably) find one with only
√
n

evaluations of f .

=⇒ symmetric keys will need to be twice as long

Quantum computers
Grover’s algorithm

Given an arbitrary function f : A→ B with |A| = n and b ∈ f (A),
looking for a preimage a ∈ A such that f (a) = b classically takes n
evaluations.

A quantum computer could (probably) find one with only
√
n

evaluations of f .

=⇒ symmetric keys will need to be twice as long

Quantum computers
Grover’s algorithm

Given an arbitrary function f : A→ B with |A| = n and b ∈ f (A),
looking for a preimage a ∈ A such that f (a) = b classically takes n
evaluations.

A quantum computer could (probably) find one with only
√
n

evaluations of f .

=⇒ symmetric keys will need to be twice as long

Quantum computers
Shor’s algorithm

Quickly finds periods or arbitrary functions.

Look for integers a for which f (x) ≡
n
ax has even period r .

(a
r
2)2 ≡

p·q
1 =⇒

a
r
2 ≡

p
±1

a
r
2 ≡

q
±1

There is a 50% chance that

gcd(a
r
2 − 1, n) and gcd(a

r
2 + 1, n)

are non-trivial factors of n.

Quantum computers
Shor’s algorithm

Quickly finds periods or arbitrary functions.

Look for integers a for which f (x) ≡
n
ax has even period r .

(a
r
2)2 ≡

p·q
1 =⇒

a
r
2 ≡

p
±1

a
r
2 ≡

q
±1

There is a 50% chance that

gcd(a
r
2 − 1, n) and gcd(a

r
2 + 1, n)

are non-trivial factors of n.

Quantum computers
Shor’s algorithm

Quickly finds periods or arbitrary functions.

Look for integers a for which f (x) ≡
n
ax has even period r .

(a
r
2)2 ≡

p·q
1 =⇒

a
r
2 ≡

p
±1

a
r
2 ≡

q
±1

There is a 50% chance that

gcd(a
r
2 − 1, n) and gcd(a

r
2 + 1, n)

are non-trivial factors of n.

Quantum computers
Shor’s algorithm

Factors n in time

(log n)2(log log n)(log log log n)

RSA (EC)DSA (EC)DH

Quantum computers
Shor’s algorithm

Factors n in time

(log n)2(log log n)(log log log n)

RSA (EC)DSA (EC)DH

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption

It is necessary to start thinking today about potential alternatives
that could be both efficient and secure against a quantum
opponent.

4 main leads :

• hash-based encryption

• based on error-correcting codes

• lattice-based

• hidden field equations.

Ongoing standardization process by NIST.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Post-quantum encryption
Lattice-based encryption

Consider a lattice Λ = {
∑

i aivi | ai ∈ Z} where v1, . . . , vn are
linearly independant vectors in Rn.

Encryption : we add to a message v ∈ Λ a small perturbation
e ∈ Rn,

c = v + e.

Decryption : given c, look for the nearest vector v in the lattice.

Algorithmically difficult problem if an adapted basis is not known.

Post-quantum encryption
Lattice-based encryption

Consider a lattice Λ = {
∑

i aivi | ai ∈ Z} where v1, . . . , vn are
linearly independant vectors in Rn.

Encryption : we add to a message v ∈ Λ a small perturbation
e ∈ Rn,

c = v + e.

Decryption : given c, look for the nearest vector v in the lattice.

Algorithmically difficult problem if an adapted basis is not known.

Post-quantum encryption
Lattice-based encryption

Consider a lattice Λ = {
∑

i aivi | ai ∈ Z} where v1, . . . , vn are
linearly independant vectors in Rn.

Encryption : we add to a message v ∈ Λ a small perturbation
e ∈ Rn,

c = v + e.

Decryption : given c, look for the nearest vector v in the lattice.

Algorithmically difficult problem if an adapted basis is not known.

Post-quantum encryption
Lattice-based encryption

Consider a lattice Λ = {
∑

i aivi | ai ∈ Z} where v1, . . . , vn are
linearly independant vectors in Rn.

Encryption : we add to a message v ∈ Λ a small perturbation
e ∈ Rn,

c = v + e.

Decryption : given c, look for the nearest vector v in the lattice.

Algorithmically difficult problem if an adapted basis is not known.

Post-quantum encryption
Lattice-based encryption

Thanks !

